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Abstract
Predicting the relationship between the morphology of porous media and
their physical properties, e.g, the conductivity, elasticity and permeability,
is a long-standing problem and important to a range of applications from
geophysics to materials science. Here, a set of four morphological measures,
so-called Minkowski functionals, is defined which allows one to quantitatively
characterize the shape of spatial structures, to optimally reconstruct porous
media, and to accurately predict material properties. The method is based on
integral geometry and Kac’s theorem which relates the spectrum of the Laplace
operator to the four Minkowski functionals. Analytic expressions for mean
values of Minkowski functionals in Boolean models allow the definition of an
effective shape of a grain in a system made up of a distribution of arbitrarily
shaped constituents. Reconstructing the microstructure using this effective
grain shape leads to an excellent match to the percolation thresholds and to the
mechanical and transport properties across all phase fractions. Additionally,
the use of the effective shape in effective medium formulations leads to good
explicit predictions of bulk moduli. The method is verified for several model
systems and sedimentary rock samples,demonstrating that a single tomographic
image is sufficient to estimate the morphology and physical properties such as
permeabilities and elastic moduli for a range of porosities.

Also the thermodynamic behaviour of fluids in porous media, i.e., the
shape dependence of the grand canonical potential and of surface energies of
a fluid bounded by an arbitrarily shaped convex pore, can be calculated in the
thermodynamic limit fully from the knowledge of the Minkowski functionals,
i.e., of only four morphometric measures. This remarkable result is based on
Hadwiger’s theorem on the completeness of the additive Minkowski functionals
and the assumption that a thermodynamic potential is an ‘additive’ functional
which can be understood as a more precise definition for the conventional term
‘extensive’. As a consequence, the surface energy and other thermodynamic
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quantities contain in the thermodynamic limit, beside a constant term, only
contributions linear in the mean and Gaussian curvature of the pore and not
an infinite number of curvature terms. Finally, starting from a microscopic
density functional for an inhomogeneous fluid in a porous medium the phase
coexistence (capillary condensation) and the critical point of the fluid is
determined in terms of structure functions and morphological measures of the
pore space and calculated explicitly for specific random porous structures using
results from integral geometry.

(Some figures in this article are in colour only in the electronic version)

1. Introduction: predicting physical properties of porous materials

The characterization and realistic modelling of disordered porous materials as diverse as soils,
sedimentary rocks, paper and catalysts has been a major problem for physicists, earth scientists
and engineers for many years [1–4]. Nevertheless, the prediction of mechanical and optical
properties of the material, as well as the prediction of transport and phase behaviour of fluids in
porous structures, from measures of the morphology and topology is still an unsolved problem.
The complicated pore structure of an interconnected three-dimensional network of capillary
channels of nonuniform sizes and shapes distinguishes a porous medium from any other solid
or planar substrate.

How do we characterize the structure of a complex material? This question is both
of fundamental interest and is crucial to the understanding of many industrially important
processes. The statistical characterization and modelling of disordered microstructures is
a central problem in several applied fields. Accurate modelling relies on the availability
of good microstructural models, which in turn relies on accurate statistical characterization.
In section 2 statistical measures are introduced which are sensitive to the morphology of
structures [5]. A porous substrate may be modelled by overlapping grains (Boolean grain
model; see [6]) and is characterized by structure functions and morphological measures such
as volume, surface area, mean curvature, and connectivity of the pores. These measures are
known as Minkowski functionals in integral geometry which provides powerful theorems to
make the calculus convenient. In sections 3 and 4 these morphological measures are used
to predict two important properties of fluids in porous media: transport and thermodynamic
phase behaviour, respectively. Although results are preliminary they illustrate the possibilities
of the morphological approach to study fluids in porous media as described in this paper.

In a first step the Minkowski functionals are used in section 2 to characterize, discriminate
and finally reconstruct different complex material microstructures. The section mainly reviews
the results from [7–10] and follows the presentation used there but has added new data of
a Fountainebleau sandstone which supports the previous results. Three distinct classes of
digitized complex microstructure are considered: particle based composites with different
grain shapes, structures generated by level-cuts through Gaussian fields, and models based
on a Voronoi tesselation of space [7, 8]. The models are chosen to represent a wide range
of composite structure. Also several experimental data sets of a Fontainebleau sandstone
are used which are generated from x-ray-CT imaging. The section illustrates first how the
Minkowski functionals can discriminate different classes of structure (section 2.3; [8]). Next
a reconstruction scheme for spatially complex structures is developed. It is shown that for any
structure, one can, from a single image of a system at any phase fraction (porosity) define a set
of parameters based on Minkowski functionals which allows one to accurately reconstruct the
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medium for all other phase fractions (section 2.4; [8, 9]). Third, the morphometric approach
is extended via the application of erosion and dilation operations. The method is used to
sensitively discriminate between different morphologies (section 2.5; [10]).

The method introduced in section 2.4 allows one to define in section 3 an effective local
shape of a grain from any complex system made up of a distribution of arbitrarily shaped
constituents. The method requires no prior knowledge of the original ensemble of grain size
and shape. Kac [11] showed that the short time behaviour of the diffusion equation in a
complex porous medium is governed by four additive Minkowski measures defined by integral
geometry. In section 3 it is shown that a reconstructed porous medium based on the equivalent
shape which honours these additive measures exhibits similar physical properties to the original
system [9]. In section 4 first steps are made towards the connection of the two main features,
morphology and interfacial properties such as surface energies and wettability, in order to
predict the phase behaviour of fluids in porous media.

2. Characterization and reconstruction of porous media

The structure of a disordered material—an oil bearing rock, a piece of paper, or a polymer
composite—is a remarkably incoherent concept. Despite this, scientists and engineers are
asked to predict the properties of a disordered material based on the ‘structure’ of its constituent
components. A major shortcoming in the understanding of processes involving complex
materials has been an inability to accurately characterize microstructure. The specification of
‘structure’ requires topological as well as geometric descriptors to characterize the connectivity
and the shape of the spatial configuration. Oil recovery from petroleum reservoir rocks depends
crucially on the topology of the pore space and on the mean curvature of the surfaces where
immiscible phases meet at a contact angle. To determine accurate flow models and to devise
intelligent recovery strategies requires an accurate characterization of reservoir rocks in terms
of topology and geometry.

The models for stochastic geometries, which are considered in the literature to reconstruct
porous media, can be loosely separated into three different classes:

(i) particle based models or so-called Boolean models, which include Poisson distributed
overlapping oblate and prolate spheroids (see figure 1);

(ii) Gaussian models where interfaces are generated by level cuts of a superposition of random
plane waves [12, 13]. Originally developed to describe the morphologies associated
with spinodal decomposition [14], and later to describe the structure of bicontinuous
microemulsions [15], the levelled wave model accounts for many features observed in
real disordered materials [12] including amorphous composite, polymer blends [16] and
foams [17]. An examples of the morphologies which can be generated by level cuts of
Gaussian models is illustrated in figure 2(a).

(iii) The third class of morphologies, random cellular solids [18], is constructed using a Voronoi
tesselation. In this model the space is subdivided randomly into convex polyhedra by
scattering Poisson points to a given density and construct the corresponding Wigner–Seitz
cells, i.e., the bisecting planes between each pair of points. Within each polyhedron every
point is closer to the given Poisson point than to any other. The resultant structure is
similar to that of a closed-cell foam (see figure 2(b); thickening the facets) or to aerogels
(see figure 2(c); thickening of edges).

To date, the main toolkit used to quantify such complex structures has been primarily that
of the statistical physicist and not the advanced techniques developed in spatial statistics [2, 19–
21] and digital image analysis [22]. Complete characterization of the effective morphology
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(a) (b)

(c)

Figure 1. The interface of various Boolean models where overlapping convex grains (particles) are
distributed randomly (from [10]): (a)–(c) overlapping spheres, overlapping spheroids randomly
oriented and overlapping spheroids, fully aligned. The volume fraction of the particle phase is
φ = 0.2.

however requires knowledge of an infinite set of n-point statistical correlation functions. In
practice only lower order morphological information is available; common methods [23] are
based on matching the first two moments (volume fraction and two-point correlation function)
of the binary phase function to a random model. It is widely recognized that although the
two-point correlation function of a reference and a reconstructed system is in good agreement,
this does not ensure that the structures of the two systems will match well and attempts to
reconstruct materials from experimentally measured two-point information have not been
very successful [24, 25]. In addition, the function does not capture important features of
the microstructure which are relevant for physical properties.

Other useful two-point characterizations of microstructure include the chord-length
distribution function [22, 26] (and the related lineal-path function [27]), the pore
size distribution function [28] and other techniques from spatial statistics and image
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(a) (b)

(c)

Figure 2. Stochastic geometries: (a) the interface of a Gaussian model (one-level cut) for volume
fraction φ = 0.5; (b) the interface of a Voronoi model with 100 seed points (facet model) and
volume fraction φ = 0.25 and (c) edge model for open cell foams at volume fractions of φ = 0.06.

analysis [2, 22, 29, 30]. However, reconstructions of experimental data sets based on these
characterizations have been shown to give a poor representation of the connectivity of the
systems [31]. Functions that may provide more complete information about connectivity [33]
are unfortunately too complex to incorporate into reconstruction schemes [31]. Incorporation
of three- and four-point information may lead to a better estimation of structure, but their
measurement is very complex and it is not clear how to incorporate the information within
reconstruction algorithms. There is a need for morphological measures which include higher-
order correlations, but are fast and reliable for characterizing the morphology of a structure.

Statistical measures which are sensitive to the morphology or shape of structures, i.e., to
curvatures and connectivity, have been extensively investigated in other fields such as image
analysis and pattern recognition [2, 22, 29, 30, 34]. Integral geometry [35, 36, 5, 37, 38]



S508 K Mecke and C H Arns

provides a suitable family of morphological descriptors, the Minkowski functionals (MFs).
These measures embody information from every order of the correlation functions in an
integral way, are numerically robust even for small samples and yield global as well as local
morphological information. One of the Minkowski functionals is the Euler characteristic which
can be used as a topological measure for the connectivity of spatial structures. The Minkowski
functionals characterize not only the connectivity, but the shape and content of spatial figures.
In three dimensions the functionals are related to the familiar measures of volume fraction,
surface area, integral mean curvature and Euler characteristic. These measures are efficiently
calculated at the local scale from digital images [5, 38, 39]. Minkowski functionals have
been used previously to distinguish quantitatively between different complex morphologies,
to characterize turbulent and regular Turing patterns from chemical reaction-diffusion
systems [40], to characterize spinodal decomposition and dewetting of thin liquid films [41–43],
to discriminate between different cosmological models of the early universe [37, 44, 45] and
to show that the hole distribution in thin films is inconsistent with the concept of spinodal
decomposition, but consistent with a nucleation scenario [46–48]. Measurements of the
Minkowski functionals for model random materials hves to date been made systematically
on Boolean models and on two sandstone samples [7–10].

2.1. Integral geometric measures

Integral geometry [35, 36] provides complimentary methods and tools for measuring spatial
structure. These tools are commonly used in other disciplines (e.g., digital image analysis [34])
but have only recently been developed in a systematic way as measures of complex media [7].
A family of measures, the Minkowski functionals in particular seem to be promising measures
for describing the morphology of complex materials. The functionals characterize not only
the connectivity, but the shape and content of spatial figures such as the configurations shown
in figures 1–4 and 12. As many physical phenomena depend essentially on the geometry of
the spatial structure, integral geometry may provide useful tools to study physical systems. In
particular, integral geometry provides powerful formulae for the Boolean model. A review of
these measures and applications in physics are given in [5, 38, 7].

The reconstruction method is based on Hadwiger’s theorem [35, 36]; the global
morphology of a two-phase complex material defined by the phase fraction φ, the surface
area S, the integral mean curvature H and the genus χ is unique and forms the only motion-
invariant and additive measure of structure. The method is also based on the result that the
global morphology (φ, S, H , χ) can be related to a Boolean process defined by local grains
of volume V0, surface area V1 and integral mean curvature V2 at a density ρ [5, 38]. In this
section integral geometric measures are studied only of digitized representations of complex
media, i.e., of a two-component medium filling a cubic volume N = L3. A digitized set of
either component can be described by a collection of voxels of compact (closed and bounded)
convex sets. The global morphology of a Boolean model, i.e., of a structure ∪i Ki made up of
individual overlapping grains Ki of number density ρ are [5, 38, 7]

v0 = φ(ρ) = 1 − e−ρV0

v1 = 1
6 S(ρ) = e−ρV0(1 − e−ρV1)

v2 = 1

3π
H (ρ) = e−ρV0(−1 + 2e−ρV1 − e−ρ(2V1+V2))

v3 = χ(ρ) = e−ρV0(1 − 3e−ρV1 + 3e−ρ(2V1+V2) − e−ρ(3V1+3V2+V3)),

(1)

where φ is the particle phase fraction, S is the surface to volume ratio, H is the specific integral
mean curvature and χ is the specific Euler characteristic (genus). The Vi = Vi(K ) are the
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(a) (b)

(c) (d)

Figure 3. Pore space images of a central 1203 piece of each of the four 4803 Fountainebleau
sandstone samples ((a) φ = 7.5%, (b) φ = 13%, (c) φ = 15%, (d) φ = 22%), each taken from the
centre.

measures of the individual grains in units of the voxel size (Vi = 1 for a single voxel), whereas
the vi denote the intensities of the measures Vi(∪i Ki), i.e., the mean values of the Minkowski
functionals of the union of all grains normalized by the total number of voxels. Note that these
intensities were derived by Miles (1976) for non-discretized configurations (see [49] for an
algorithm to numerically estimate Vi(∪i Ki), and [50] for analytic expressions for the second
order moments of Vi(∪i Ki)), whereas equation (1) holds for unions of digitized grains K
defined as a collection of voxels. It is convenient to normalize the Minkowski functionals
for digitized data so that for a single voxel one has Vi = 1, in contrast to the normalization
Wi = ωiVi usually applied for shapes in the Euclidean space with the volume ωi of an i -
dimensional unit sphere. Thus, for cubes of sidelength λ voxels in three dimensions one has
V0 = λ3, V1 = λ2, V2 = λ and V3 = 1, and for lattice-aligned rectangular sticks of edge length
λiV0 = λ1λ2λ3, V1 = (λ1λ2 + λ1λ3 + λ2λ3)/3, V1 = (λ1 + λ3 + λ3)/3 and V3 = 1. These
powerful formulae given in equation (1) illustrate that it is sufficient to know the morphology
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(a) (b)

(c) (d)

Figure 4. Visual comparisons of reconstructions to a 2403 subset of the original Fountainebleau
sandstone sample (φ = 15%): (a) Fountainebleau sandstone, (b) identical overlapping sphere
model (IOSC), (c) randomly oriented spheroids ROS(2), (d) OSC.

of the individual grains Vi = Vi(K ) and the density of the grains ρ to derive the mean values
vi of the global morphology, measured in terms of φ, S, H and χ(ρ).

This result also holds for complex mixtures of grains where Vν is now replaced by proper
averaged values of arbitrarily shaped grains, for instance, for mixtures of polyhedra as used
later. One can replace the quantities Vν of a single grain by averages over an ensemble of n
grains, weighted by the probability p j of their occurrence 〈Vν〉 = ∑n

j=1 p j Vν j for ν = 0, . . . , d
where p j = ρ j/ρ is the ratio of the densities of the Poisson processes. The equation (1) also
holds if the grains are correlated (hard-shell, soft-shell models) if one uses local measures
Vν[ξ(�r)], which exhibit a small dependence on the correlation function ξ(�r) for short-ranged
correlations. Details and the explicit dependences are given on p 161 in [20]. For most practical
applications, one may assume constant values of Vν in equation (1) for arbitrarily shaped and
correlated mixtures of grains.
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The intensities φ, H, S, χ(ρ) of the global Minkowski functionals can be measured
directly from a single 3D tomographic image or from a pair of 2D serial sections of a complex
material, i.e., from any image made up of discrete voxels. For example, the volume fraction
φ of a phase is trivially obtained by dividing the number of voxels of that phase by the total
number of voxels. The other functionals are obtained by considering the interface associated
with the vertices of each voxel. Global measures vi = Vi(∪i Ki)/N for each configuration are
obtained by configuration counts over all vertices on any voxellated structure after normalizing
by the total number N = L3 of vertices [7, 51, 52]. In [7] the algorithm used to calculate these
measures was validated against equation (1) for a monodisperse grain ensemble and in [8] for
an ensemble made up of mixtures of grains. From this measurement and equation (1) one can
determine the local shape of an equivalent grain ensemble, Vν, ν = 0, 1, 2, and its density ρ

which is described below in detail (section 2.3).

2.2. Experimental images from microtomography

Direct measurement of a 3D structure is now available via x-ray computed
microtomography [53, 54]. These techniques provide the opportunity to experimentally
measure the complex morphology of a range of materials in three dimensions at resolutions
down to a few micrometres and lower. From this technology four 4.52 mm diameter cylindrical
core samples of Fountainebleau sandstone are obtained with a resolution of 5.68 µm [53–55].
X-ray computed tomographic images of porous media are grey scale images, usually with
a bimodal population apparent, one mode corresponding to the signal from the void space,
the second to the signal from the grain space. A simple thresholding based on matching
the predetermined porosity is often used to segment a tomographic image and to obtain a
binary pore–solid image. Here, we use data from Lindquist based one a thresholding by
indicator kriging [56]. The images are also corrected for noise by re-identifying the phase
type of all isolated grain and void voxel clusters. These isolated voxels would otherwise
have a strong effect on many morphological measures. Finally, from each of the binarized
cylindrical plugs of the Fountainebleau sandstone with bulk porosities φ = 7.5%, 13%, 15%
and 22% a centred 4803 cubic subset was extracted for analysis corresponding to a volume of
20.3 mm3 (see figure 3). The samples show the variability of shapes and structures observed
in the Fontainebleau cores. Fontainebleau is considered very homogeneous, and considered
a ‘benchmark’ of a homogeneous rock in the petroleum industry, but a plot of the porosity
variations shows considerable variability on the local grain scale.

2.3. Characterization of a sandstone sample

The availability of 3D images has accelerated the development of computational tools to
directly measure the stochastic nature of the porous materials and to construct realistic
representations of the complex space [57, 58]. A number of statistical models have been
proposed for reconstructing porous media from statistical information [23, 24, 59, 60]. These
methods, based on different underlying model microstructures, are generated in such a manner
that they match the observed two-point statistical properties of the rock (see p 93 in [19]).
Of course, one can derive more complex model systems which incorporate other two-point
correlation information, e.g., chord distribution functions [26, 22, 59], but recent work has
shown that these measures give a poor representation of connectivity [31]. Results on
Minkowski functionals of these more complex models indicate that this is reflected in a poor
match to the curvature measures v2 ∼ H and v3 ∼ χ [8, 10]. Let us compare the sandstone
samples with several stochastic models.
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(i) The first is based on a germ–grain model with spherical grains, the so-called ‘identical
overlapping sphere’ (IOSC) model. The correlation function for the phase external to
the spheres of radius r0 is p(2)(r) = φ1+3r/(4r0)−r3/(16r3

0 ) for r < 2r0 and p(2)(r) = φ2

for r > 2r0 with the surface to volume ratio Sr0 = −3φ ln φ. The parameter r0 can be
chosen to match best the two-point correlation functions of the sandstone samples which
is indicated in the superscript (C).

(ii) Gaussian random field models are frequently used to reconstruct porous media. Here, we
use configurations of a Gaussian model as introduced in [32], where five different one-
level cuts of the same realization are intersected. To generate a matching Gaussian random
field the field–field correlation function is employed where the length scale parameters
are obtained by a best fit procedure to minimize the non-linear least squares error to the
sandstone sample.

(iii) In Boolean models overlapping convex grains (particles) are distributed randomly. In the
following section 2.4 a technique is presented to determine the shape of the grain, so that
the morphologies of the sandstone samples are matched best. Three different types of
grains are considered: (a) identical spheres (IOS(V) model), (b) a mixture of spheres with
two different radii (IOS(2) model), and (c) a mixture of spheroids of different sizes, i.e.,
half-axes (ROS(2) model).

(iv) Alternative methods to generate a Boolean ensemble exist for model microstructures
based on spheres. Recently Thovert et al [57] introduced a reconstruction technique for a
sandstone based on a model of overlapping spheres where the sphere size distribution is
defined by the probability density of the covering radius for spheres (OSC model). This
method is employed to generate another appropriate Boolean model for the four sandstone
images. The median a of the radius distributions defined in [57] is given in table 2.

The original sandstone microstructure for the sample at 15% and reconstructions via the
overlapping grain models (IOSC , ROS(2), OSC) are illustrated in figure 4. Visual inspection
suggests that the ROS(2) and OSC models more closely resemble the original microtomographic
image, but quantitative measures are definitely needed to distinguish these structures.

The quantities usually used to characterize the microstructure of these systems are the
volume fraction, the surface to volume ratio S and the two-point correlation function p(2)(r).
Note that p(2)(0) = φ, p(2)(∞) = φ2 and S = −4 d p(2)(0)

dr . The stochastic models that best
match the four 4803 samples are generated and the two-point correlation functions p(2)(r) of
these models are compared in figure 5. The match of p(2)(r) is very good for the Gaussian
intersection model and the overlapping sphere (IOSC) model, where the two-point correlation
function is used to determine the free parameters of the models. Thus, the good agreement is
not astonishing. It is also not amazing that the Boolean model IOSV shows large deviations,
because p(2)(r) is never used in the construction of this model as explained in the following
section 2.4. However, the Boolean model ROS(2) of a mixture of overlapping spheroids exhibits
a remarkable agreement with the correlation function of the sandstone sample, although the
model does not use this information. One may conclude that the correlation function is not a
very sensitive measure to distinguish different stochastic structures.

Let us now compare the intensities vi of the global Minkowski functionals for the various
models and for the sandstone samples (figure 6). An analysis of the full 4803 cubic subsets
would only give a single value for the porosity of each of the four samples and would provide
few data to compare to stochastic models. However, the samples are reasonably heterogeneous
in the pore volume fraction φ. Due to this natural heterogeneity and by appropriately choosing
different window sizes on the image it is possible to measure morphological parameters for
the sandstone images across a range of pore volume fractions φ. This gives us a more
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Figure 5. The two-point correlation function p(2)(r) of the 4803 Fountainebleau sandstone sample
and several reconstructed model structures (see figure 4) do not show significant differences,
although they are based on completely different construction techniques. In contrast, the
morphometric measures shown in figure 6 make differences in the models clearly visible.

comprehensive data set with which to compare experimental images to equivalent models.
For the Fontainebleau samples cubic blocks of 4803, 2403 and 1203 are considered. This
provided in all cases a good spread of porosities across different sampling volumes. The
measured morphological properties S, H, χ(φ) resulting from the sampling window at 1203

are summarized in figure 6. The values for the samples were binned in steps of porosity
	φ = 0.02. It is interesting that the fourth Fontainebleau data set at 22% exhibits very different
measures to the first three sets. This could indicate the potential presence of heterogeneity, as
seen in figure 5(c) in Thovert et al [57]. Another explanation may be that another diagenetic
process occured during consolidation of this sample.

The Gaussian intersection model does not satisfactorily match the experimental data (not
shown), which indicates the granular structure of the sedimentary rock. The surface area
v1 ∼ S is matched by the identical overlapping sphere (IOSC) models, but the integral mean
curvature v2 ∼ H and the topology v3 ∼ χ is not described well by the IOSC model. As
indicated by the relative error in the local integral geometric measures Vi (table 2) the ROS(2)

model almost exactly matches the local measures of the sandstone samples. The IOSC and OSC
model perform poorly, particularly for H , where IOSC overestimates and OSC underestimates
the image data (see figure 6).

Even though the other models do reasonably well at the fraction where the two-point
correlation functions were matched, they fail to describe the structure across a range of
phase fractions. Different transport and mechanical processes will depend more strongly
on the agreement with specific morphological measures. For example, single-phase flow and
conductivity in clean sandstones will be most strongly affected by surface-to-volume ratio
(related to average constriction size) and topology. A model which accurately describes these
two measures may still yield good agreement with experiment. However, multiphase flow
properties depend crucially on the curvature of the surfaces where immiscible phases meet.
For these processes a model that also accurately matches H , i.e., v2, will be required. In this
case the ROS(2) model is the best of the candidates as a reconstructed data set. In the following
section we describe briefly how this model is constructed.



S514 K Mecke and C H Arns

0.00 0.05 0.10 0.15 0.20 0.25 0.30
φ

v 3 
[m

m
–

3
]

0.00 0.05 0.10 0.15 0.20 0.25 0.30
φ

0

10

20

30

40

50

v 2 
[m

m
–

2
]

0.00 0.05 0.10 0.15 0.20 0.25 0.30
φ

0

1

2

3

4

5
v 1 

[m
m

–
1
]

  fb7.5, 1203

  fb13, 1203

  fb15, 1203

  fb22, 1203

  all, 2403

  all, 4803

IOS
C

IOS
C

IOS
C

– 600

– 400

– 200

0

200

400

0.00 0.05 0.10 0.15 0.20 0.25 0.30
φ

v 3 [m
m

–
3
]

0.00 0.05 0.10 0.15 0.20 0.25 0.30
φ

0

10

20

30

40

50

v 2 
[m

m
–

2
]

0.00 0.05 0.10 0.15 0.20 0.25 0.30
φ

0

1

2

3

4

5

v 1 
[m

m
–

1
]

  fb7.5, 1203

  fb13, 1203

  fb15, 1203

  fb22, 1203

OSC

OSC

OSC

– 600

– 400

– 200

0

200

400

0.00 0.05 0.10 0.15 0.20 0.25 0.30
φ

v 3 
[m

m
–

3
]

0.00 0.05 0.10 0.15 0.20 0.25 0.30
φ

0

10

20

30

40

50

v 2 
[m

m
–

2
]

0.00 0.05 0.10 0.15 0.20 0.25 0.30
φ

0

1

2

3

4

5

v 1 
[m

m
–

1
]

  fb7.5, 1203

  fb13, 1203

  fb15, 1203

  fb22, 1203

  all, 2403

  all, 4803

ROS
(2)

ROS
(2)

ROS
(2)

– 600

– 400

– 200

0

200

400

(a) (b) (c)

Figure 6. Comparison of the Minkowski functionals over fraction φ for each of the four
Fontainebleau sandstone samples (symbols) to three stochastic models (from [8]): (a) (left) IOSC,
(b) (middle) OSC and (c) (right) ROS(2). For v2 ∼ H and v3 ∼ χ the measures for the highly
connected neighbourhood are given. The curves show the binned Minkowski functionals of the
reconstructed systems (solid, fb7.5; dotted, fb13; dashed, fb15; long dashed, fb22). Although the
correlation functions are similar in the models (see figure 5), the morphometric measures differ
considerably, indicating that the ROS(2) model matches best the sandstone structure.

2.4. Reconstruction of complex morphologies via Minkowski functionals

In the previous section the knowledge of the local ‘grain’ morphology Vi in equation (1) is
used to predict the global morphology, i.e., the surface area S, the mean curvature H , and
the Euler characteristic χ , of a Boolean model at any porosity. Now let us consider the
inverse process; from a single snapshot of a complex structure one can derive an equivalent
local ‘grain’ ensemble which will generate the same complex global morphology. As one
can evaluate the four global morphological measures φ, S, H, χ from a single 3D image,
one can use equation (1) to obtain estimates for V0, V1, V2 and density ρ of the local
grain morphology, which may finally be used to select the grains in a Boolean model for
reconstruction. The local grain measures Vi of the Fontainebleau sandstone samples are
summarized in table 1—estimated by inverting equation (1). Note that all Boolean models
have convex grains with V3 = 1. This technique is called ‘method of intensities’ (see
p 89 in [19]) and statisticians consider it as the best estimation method. Here it illustrates
the ability of the morphological approach to accurately reconstruct the experimental 3D



Fluids in porous media: a morphometric approach S515

Table 1. Mean values of the local Minkowski functionals for the four Fontainebleau sandstone
samples of size 4803 given in section 2.2 (V3 = 1 for convex grains).

Sample (%) V0 (10−3 mm3) V1 (10−3 mm2) V2 (mm)

7.5 0.4019 3.994 0.0473
13 0.3619 3.752 0.0466
15 0.4506 4.520 0.0523
22 0.3361 3.965 0.0509

microtomographic images of the sandstone. Of course, the microstructure of a sandstone
is a result of a complex physical process, which can include consolidation, compaction and
cementation of an original grain packing, and more realistic models of sandstones have been
derived [62, 63]. These methods require, however, the simulation of the generating process
including primary grain sedimentation followed by a diagenetic process such as compaction
and cementation. This process is both computationally expensive and requires several fitting
parameters. Reconstructing the microstructure of sandstones by the simple Boolean model may
therefore not lead to an excellent match. However, a Boolean model with spherical grains has
been proposed as a model which gives a reasonable representation of consolidated sandstone
and yields good qualitative information on structure/property relationships. Moreover, also
other work [57] has shown that the model of overlapping spheres gives a very good match to
Fontainebleau sandstone data.

In the remainder of this section the reconstruction method based on the Boolean model is
applied to the Fontainebleau sandstone sample described in section 2.2. The goodnesses of fit
of three different Boolean models are compared: overlapping spheres with matching two-point
information (IOSC model), the equivalent Boolean ensemble defined by local morphological
measures Vi (ROS(2) model) and a recent model (OSC) based on the probability density of
covering spheres [57].

In the first approach the diameters for an overlapping grain model with a deterministic
spherical grain are estimated by means of the two-point correlation function introduced in
section 2.3 (identical overlapping sphere (IOSC) model). In the second approach, the diameters
are estimated based on the ‘method of intensities’, i.e., the single sphere can also be determined
by using the reconstruction technique (see equation (1)) based on the local grain measures Vν

(IOSV model). The local grain measures of the Fontainebleau sandstone samples are given in
table 1, and the best matching models to these local measures in table 2. Interestingly, the size
of the best matching IOSV sphere is significantly smaller than the IOSC sphere.

To gain some degrees of freedom, a single equivalent spheroidal grain (randomly oriented
spheroids (ROS(1)) model) is attempted to fit to the local Vν given in table 1, but one observes
only a slight improvement in the prediction. It is therefore necessary to use more complex
models. Our first attempt is a Boolean model with a random mixture of spherical grains to
accurately match the local measures. This is done first for a two-point diameter distribution,
i.e., for two different spheres (IOS(2)). This leads to a better match, but the error in V2 is
still considerable (see table 2). Then the best two-particle match for a Boolean model of
spheroids (ROS(2) model) is derived. The match to the local Vν of the experimental image is
now excellent. It is interesting to note that the unique information obtained from the integral
geometric measures leads to a quite complex equivalent stochastic model for the Fontainebleau
sandstone. The ROS(2) model is composed of two very different particle sizes (table 2). The
median a of the radius distributions for the OSC model is given in table 2. This median
is comparable to the size of the larger particles in the two-particle reconstructions but is
significantly larger than either single-particle IOS fit.
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Table 2. Parameters for the Boolean models of the Fontainebleau sandstone and errors of the
morphological matches. The first IOS model (IOSC) was matched using the void–void correlation
function. The other models are matched using the reconstruction based on estimating the local
grain shape, i.e. the morphometric functionals Vi, of a Boolean model. IOS is generalized to more
than one sphere; all spheroids are randomly oriented (ROS model: randomly oriented spheroids).
Note the large errors EVi in the local measures for the one-particle IOS model. For all two-particle
models one of the particles is very small and has a width of the order of a few voxels. a, b, c note
the length of the half-axes with the exception of the OSC model, where a notes the median of the
radius distribution G(rc) = 1/2.

Model Core (%) p a (µm) b (µm) c (µm) EV0 EV1 EV2

IOSC 7.5 1 71.3 3.4 3.6 2.5
13 1 65.8 2.4 2.6 1.8
15 1 69.1 3.1 3.4 2.5
22 1 59.0 1.6 1.8 1.3

IOSV 7.5 1 45.8 5.3 × 10−3 0.71 0.022
13 1 44.6 0.016 0.66 6.8 × 10−3

15 1 47.4 4.1 × 10−3 0.058 0.84
22 1 43.2 2.5 × 10−3 0.44 0.67

IOS(2) 7.5 0.865 16.6 4.8 × 10−3 6.6 × 10−4 0.022
0.135 88.3

13 0.864 16.6 3.9 × 10−5 1.8 × 10−4 6.8 × 10−3

0.136 84.8
15 0.817 13.3 7.5 × 10−5 1.1 × 10−4 0.018

0.183 83.3
22 0.798 16.5 2.2 × 10−5 3.0 × 10−4 8.7 × 10−3

0.202 72.4
ROS(2) 7.5 0.848 12.5 11.9 8.52 1.5 × 10−7 7.5 × 10−6 1.5 × 10−4

0.152 83.5 80.7 77.2
13 0.863 15.9 11.4 9.09 9.1 × 10−8 5.4 × 10−7 3.0 × 10−5

0.137 84.6 76.7 76.1
15 0.794 15.3 12.5 8.52 1.8 × 10−7 2.7 × 10−6 8.9 × 10−5

0.206 84.6 80.1 76.7
22 0.751 16.5 10.8 8.52 2.1 × 10−7 2.0 × 10−6 1.6 × 10−5

0.249 74.4 67.0 63.6
OSC 7.5 94.8 7.4 5.2 2.4

13 86.0 12 8.6 4.1
15 85.9 5.3 3.9 2.0
22 67.7 3.2 2.4 1.4

Studying table 2 and figure 6 one may conclude that the closest morphological match to
the original data is given by the Boolean reconstruction technique over a range of porosity.
The ROS(2) model matches all Minkowski functionals very well, IOS(2) is still good with the
exeption of the V3 measure, while IOS(V ) is still better than the techniques based on two-
point information (IOS(C)) or covering spheres (OSC). In general, the reconstruction based
on integral geometric measures of a Boolean model gives a better match to the morphology
than the commonly used IOSC and the recently developed OSC model. Moreover, unlike
the IOSC and OSC models, the current method is not limited to spherical grains, but can be
used to generate more complex grain shapes. The morphological reconstruction of sandstones
via Boolean models does not give as accurate a match to the experimental data as we observe
when reconstructing a complex Boolean model by a simpler Boolean model. Clearly, a Boolean
process cannot mimic sandstone formation (sedimentation, diagenesis, compaction, etc). The
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reconstruction method can be improved: one development that will further highlight the utility
of the proposed technique is based on conditioning the equivalent ensemble to better mimic
the local morphology of the medium. This could be done by conditioning to local curvature
measures or chord-length distribution measurements which will limit the choice of grain
‘shape’ to use in the equivalent Boolean ensemble. In oil recovery from petroleum reservoir
rocks recovery depends crucially on the mean curvature of the surfaces where immiscible
phases meet at a contact angle. Conditioning an equivalent Boolean ensemble to exhibit the
same distribution of local mean curvature should lead to a better prediction of multiphase flow
properties on reconstructed images. The current work is based on deriving equivalent local
measures from an image for Boolean models: equation (1). Concluding, we emphasize that the
morphometric reconstruction scheme provides much more information on the local structure
of a sample than two-point correlation functions. Extension of the methodology to more
general systems; hard-sphere mixtures, soft-sphere models and models based on Gaussian
random fields representing a wider range of complex materials including ceramics, composite
materials and fibrous media is now being considered. The technique can also be extended by
applying the concept of parallel surfaces as described in the following section.

2.5. Characterization by parallel surfaces

In the previous section morphological measures were applied for the characterization and
reconstruction of the shape of disordered systems. An even more powerful discriminator of
morphology is based on the evolution of the Minkowski functionals vν(ε) during erosion and
dilation operations [64]. This methology has been used previously to discriminate between
different cosmological models of the early universe [37, 44, 45] and to characterize the
dewetting and structure formation in thin liquid films [46–48]. In these cases, the Minkowski
functionals of parallel bodies of a point pattern (a convex set) were considered. The point
pattern was dilated to obtain detailed morphological information where the parallel distance ε

was used as the diagnostic parameter [49]. Here, the evolution of the Minkowski functionals is
studied during erosion and dilation operations on complex non-convex morphologies [10]. The
method can be used to discriminate morphology from 1D (chord-length), 2D (micrographs),
and 3D (tomographs) data sets and the combination of parallel sets with Minkowski functions
leads to a very accurate discrimination of morphology.

One can define the parallel body Aε = {�x |d(A, �x) � ε} of a structure A as the set of all
points �x with distances d(A, �x) less than ε to A. Here, d(A, �x) = min(|�x − �y|; �y ∈ A) denotes
the minimal Euclidean distance where |�x | is the standard norm in a d-dimensional Euclidean
space. Changing ε corresponds to dilation ε > 0 and erosion ε < 0 of the spatial structure A.
For negative values of ε the parallel body is defined formally by Aε<0 = {�x; d(Ac, �x) � ε}c,
i.e., as the complement set of all points with distances less than ε to the complement Ac of A.
Alternatively, one may define the parallel body Aε = ∪�x∈A Bε(�x) by the union of all spheres
Bε(�x) of radius ε > 0 and centres �x ∈ A inside A. For ε < 0 the parallel body is given
by the set of all centres �x so that the union A = ∪�x∈Aε

Bε(�x) equals A. However, a direct
implementation of this definition is computationally very inefficient as it requires one to place
spheres of different sizes along all voxels at the interface at each erosion/dilation step. Parallel
sets of non-convex spatial configurations are shown in figures 1 and 2: (A) the parallel body Aε

of distance ε of Poisson distributed points is the Boolean model of overlapping spheres of radius
ε; the parallel body of facets (B) and edges (C) of a Voronoi tessellation yields completely
different spatial structures and Minkowski functionalsvν(ε) = Vν(Aε)/N as functions of ε [7].
Parallel surface may not only be used to characterize spatial non-convex patterns such as point
distributions, foams, gels, fractals or chemical patterns (see [5, 38–40]), but also to define
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Figure 7. Minkowski functions vν(ε) of the parallel surface at distance ε for the Fontainebleau
sandstone, a Boolean model of overlapping spheres (IOSC), mixtures of ellipsoids (ROS(2)), a
Gaussian random field and the OSC model as functions of the porosity φ(ε).

appropriate stochastic models for porous media, network models for percolation and liquid
wetting layers near substrates, which is important for fluids in porous media (see section 4.2).

To illustrate the powerful discrimination of morphology which comes from measuring the
Minkowski functions of parallel bodies, figure 7 shows the Minkowski functions vν(ε) of the
parallel body (distance ε) of five different configurations: (A) Boolean model of overlapping
spheres; (B) a mixture of spheroids; (C) a Gaussian random field; (D) the OSC model and (E)
a sandstone—a real porous material. The three-dimensional structures are digitized on a 1283

lattice and lengths are given in units of the pixel size [7]. The Minkowski functions vν(ε) as
functions of the volume φ(ε) of the parallel body are completely different for the four spatial
structures and none of the models can reproduce the functions for the sandstone.

The application of the parallel surface method to experimental data of Fontainebleau
sandstone [8] shows that, while the reconstruction models considered work reasonably, none
stands out as ‘brilliant’—and more realistic morphologies need to be considered to get a good
match as in [8] for model composites. This is left as future work, where process based models
will be considered as developed in [65]. Nevertheless, this section 2 illustrates that the Boolean
model is suitable for characterization and reconstruction of porous media such as sandstones. In
the following, applications on transport properties (section 3) and phase behaviour (section 4)
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are given to illustrate the possible impact of morphological measures and the Boolean model
on predicting physical properties of porous media.

3. Fluid flow and elastic properties of porous media

In the previous section it was shown how an accurate stochastic reconstruction of a complex
material made up of discrete pores or grains (inclusions) can be derived from a single 3D
snapshot at any phase fraction. The method, based on integral geometric measures, allows one
to define an effective local shape of a grain from any complex system made up of a distribution
of arbitrarily shaped constituents. The method requires no prior knowledge of the original
ensemble of grain size and shape. Here, we use this morphometric reconstruction method to
predict transport and elastic properties of porous materials.

Kac [11] showed that the short time behaviour of the diffusion equation is governed by the
additive measures φ, S, H and χ of a porous medium. In this section we follow [9] and show
that a reconstructed material which honours these additive measures exhibits similar physical
properties to the original system, for instance, to the Fountainebleau sandstone studied in
the previous section 2. Use of the equivalent shape in effective medium formulations leads
to excellent predictions of transport and elastic properties. Both the cases are considered
where the equivalent grains are permeable solid grains (infinite contrast 1:0, e.g., sintered bead
packs, sandstones, cement-based materials) and when the grains correspond to an inclusion,
i.e., pore within a solid matrix (infinite contrast 0:1, e.g., closed cell foam, fractured materials,
carbonate or basalt rock). The method of reconstructing the local shape at one porosity φ(recon)

and predicting from them the physical properties for all porosities φ is illustrated also for a
sandstone sample.

Let us consider first a complex Boolean model, i.e., a random (Poisson) distribution of a
heterogeneous mixture of five different spheroidal grains (five-grain system) defined by their
three half axes (a, b, c). The system is made up of p1 = 40% spheres (a = b = c = 12),
p2 = 10% oblate spheroids (a = b = 24; c = 3), p3 = 20% oblate spheroids
(a = b = 18; c = 16/3), p4 = 20% prolate spheroids (a = 24; b = c = 6

√
2) and

p5 = 10% prolate spheroids (a = 36; b = c = 4
√

3). As the full distribution of grains
is known, one can use the average Vν = ∑5

j=1 p j Vν j to derive the equivalent local grain
shape for this ensemble. As shown in the previous section one can also predict Vν from a
single 3D snapshot at any porosity φ(recon) of this complex mixture of grains and reconstruct
an equivalent stochastic complex system. A single equivalent spheroidal grain (ROS model)
defined by a = b = 17.2, c = 5.8 gives the best match to the local morphology Vν .

Since physical properties of porous media are essentially influenced by the percolation
behaviour of the pores let us compare first the percolation thresholds of the original five-grain
system and of the reconstructed single-spheroidal-grain model. Interestingly, the percolation
thresholds of the grain phase (p) and the inverse phase (i) respectively for the original five-
grain system φ

p
c = 0.173, φi

c = 0.0674 and the equivalent model φ
p
c = 0.183, φi

c = 0.0714
are in good agreement. This result is an immediate consequence from the fact that the
zero φ0 of the Euler characteristic v3(φ0) = 0 is an excellent estimate of the percolation
threshold φc (see [37, 52, 66] for details). The percolation threshold φc of both phases is
measured by determining φc(L) for various lattices sizes L and using the scaling ansatz:
φc = φc(L) + aL−b [3, 67]. This ability to closely predict φc of either phase from an image at
a single phase fraction φ(recon) underlines the power of a morphological characterization and
reconstruction based on integral geometric measures.

Now, one may numerically determine physical properties such as the conductance of the
original system and of the reconstructed model. The conductivity calculation is based on a



S520 K Mecke and C H Arns

0.0 0.2 0.4 0.6 0.8 1.0
φp

0.0

0.2

0.4

0.6

0.8

1.0

σ ef
f /

 σ
0

5–grain, 1:0
5–grain, 0:1
Equivalent Spheroid
Sphere

Figure 8. Effective conductivity at infinite contrast over particle fraction (φp) for the five-grain
mixture and the equivalent single spheroidal grain model (from [9]). For any φ the largest difference
is 0.007 between the original system and equivalent model. Predictions based on spherical grains
are also given, which illustrates the importance of an accurate reconstruction of the morphology
by using spheroids instead of spheres.

solution of the Laplace equation with periodic boundary conditions. In figure 8 the effective
conductivity σeff of the five-grain system is compared with its equivalent stochastic model at
infinite contrasts σp:σi = 1:0 and σp:σi = 0:1 The match of the equivalent single spheroidal
grain ensemble to the original five-grain system is excellent in all cases and superior to a
prediction based on spherical grains [68]. It is remarkable that one can generate the conductance
curve across all phase fractions for both the particle and inverse phase of a complex Boolean
system from a single image at φ

(recon)
p .

The predictions of the model reconstructions for the Fontainebleau sandstone at a scale
of 1203 are shown in figure 10. Of the reconstructions the Gaussian model, the only non-
Boolean model, performs poorest. Of the Boolean models the model performing best is the
ROS(2) model—as expected since it also matches the morphology best. However, the other
one- and two-particle models still give a reasonable match, including the original IOSC model,
which was simply matched to the two-point correlation function (see also table 2). The OSC
reconstruction consistently overestimates the conductivity of the Fontainebleau samples and
works better in the intermediate porosity range (figures 10(b), (c)).

But does a reconstructed material which honours the additive measures also exhibit similar
elastic properties to the original system? A finite element method [70] (FEM) is used to estimate
the elastic properties of the original and equivalent granular systems. The bulk and shear moduli
of the solid phase are set to those of quartz: Ks = 37 GPa and Gs = 44 GPa. In figure 9 the
simulation results are shown for the original grain ensemble and for the equivalent stochastic
match. The agreement is again excellent for both 1:0 and 0:1 contrasts. The morphology
defined by the single equivalent grain captures the relevant structural aspects which determine
the mechanical properties of the two-phase material at infinite contrast.

Calculating the material properties via reconstruction and numerical simulation over the
full range of phase fractions gives excellent predictions but requires significant computational
resources. To replace this intense computational effort with theoretical formulations would
make the integral geometric technique more widely applicable. As an effective grain has been
defined within the reconstruction method, one may consider an effective medium theory. For
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Figure 9. Bulk modulus over particle fraction φp for the heterogeneous five-grain and the equivalent
grain pack (from [9]). For any φ the largest difference is 0.011 between the original system and
equivalent model. DEM predictions are also given.

the elastic behaviour of porous materials two theories are often applied as they always lie
within rigorous bounds; the self-consistent (SC) theory and the differential effective medium
(DEM) theory [71]. The self-consistent SC theory requires defining the effective shape of both
the inclusion (grain) phase and the inverse (pore) phase. The differential effective medium
theory (DEM) treats the background phase as host medium at all phase fractions and only the
morphology of the inclusion phase need be defined. As an effective shape for the inverse phase
has not been defined yet, only DEM can be applied, which is a good model for materials with
porous inclusions such as glass foams, vuggy carbonates and oceanic basalts [72] defined by

(1 − φ)
∂M∗

DEM(φ)

∂φ
= [Ms − M∗

DEM(φ)]S∗
M, (2)

where Ms and MDEM are respectively the solid and effective moduli and S∗
M are shape-

factors given in [73]. In most DEM formulations for materials with porous inclusions the
equivalent pore shape S∗

M is either assumed to be spherical or is defined a posteriori to
give a match to experimental data. Here, the effective pore shape derived from integral
geometric considerations is used as an a priori prediction of S∗

M within the DEM formulation
and compared to predictions based on spherical inclusions (see figure 9). The DEM with
the amended shape leads to improved predictions. Conventional DEM can be modified to
incorporate percolation behaviour by taking the material at the critical phase fraction as one
of the constituents of the two-phase composite [74]. In figure 9 the prediction of this modified
DEM model is shown using the equivalent local pore shape—the match is good.

In figure 11 the Fontainebleau sandstone data are compared to the reconstructions
introduced in section 2 at the fixed resolution of 5.68 µm, namely the IOS model based
on the two-point correlation function (IOSC), the Boolean models based on the Minkowski
functionals (IOSV, IOS(2), ROS(1), ROS(2)), the Gaussian five-level intersection model [59]
and the Boolean models based on the distribution of the covering radii (OSC, [57]). All
models are reasonable predictions. Errors in predictions are at most ±5%. Consistently the
one-particle models based on the Boolean reconstruction perform very well. The IOS model
based on the two-point correlation function shows a much weaker match to the elastic moduli
of the Fontainebleau sandstone than the IOS model based on the Boolean reconstruction. The
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Figure 10. Comparison between the prediction for conductance of the matching Boolean and
Gaussian models and the Fontainebleau sandstone data: (a) 7.5%, (b) 13%, (c) 15% and (d) 22%.
The Gaussian model gives the worst match to the data over the full fractional range. Of the Boolean
models, the OSC reconstruction gives a poor match to the data for the low porosity sample. The
ROS(2) model gives the best match, but the simple IOSC model performs well [69].

only difference is in the radii chosen (see table 2), and thus in the discretization of the model,
and would scale out in the continuum limit. The Boolean matches based on two-particle
reconstructions are surprisingly giving a poorer match than the one-particle models, despite
the fact that the local morphology is matched better by these two-particle models. However, a
sandstone is not generated by a Boolean process. This can lead to errors and is discussed and
quantified in [69].

However, the morphometric approach has the potential to greatly improve predictions
of complex multiphase materials based on effective medium methods. Let us consider an
application in petroleum engineering, namely the prediction of the macropore or vuggy
porosity within carbonate rocks. The presence of vugs can lead to enhanced recovery and
improved flow properties. Current methods use shear modulus measurements from well
logs to estimate the proportion of porosity due to vugs [76]. When interpreting the shear
modulus measurements, vugs are assumed to be spherical in shape and predictions are based
on the self-consistent effective medium (SC) theory [75, 76]. Microtomography was used
to image a 4 cm × 4 cm × 1.5 cm reservoir carbonate core at the vug scale (
50 µm)
resolution [9]. 30 000 separate vugs are identified (see figure 12(a)), a broad size distribution
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Figure 11. Image based calculations of the water saturated elastic moduli of the four Fontainebleau
sandstone samples compared to Boolean and Gaussian reconstructions: (a), (b) 7.5%, (c), (d) 13%,
(e), (f) 15% and (g), (h) 22%. The Fontainebleau sandstone data are corrected to represent a
periodic ‘infinite’ sample.



S524 K Mecke and C H Arns

0 0.02 0.04 0.06 0.08
25

30

35

0.0 0.1 0.2 0.3 0.4 0.5
φ

0

10

20

30

40

G
 [G

P
a]

Image
Equivalent grain
Modified DEM
SC theory

(a) (b)

Figure 12. (a) Rendered 3D image showing the pore phase within a subset of the carbonate rock;
(b) shear modulus derived from 3D tomogram, equivalent grain reconstruction, modified DEM
theory and conventional SC theory (from [9]).

is measured and deviations from spherical shapes are found. As described in the previous
section 2 one can derive from the single image the equivalent local grain morphology:
V im

0 = 5.7 × 106 µm3; V im
1 = 3.2 × 104 µm2; V im

2 = 182 µm. For this morphology a
single equivalent grain does not match the V im

ν as the isoperimetric inequality is violated.
Searching through pairs of grains, one finds that a dual porosity system matches the measured
Vν : a 95%:5% mixture of prolate spheroidal pores with a = 105 µm; b = c = 63 µm and
a = 701 µm; b = c = 164 µm. FEM studies of shear modulus on 2403 subsets of the original
tomogram and the equivalent dual porosity mixture are shown in the inset of figure 12. The
match is excellent.

The method for determining the vuggy porosity in carbonate rock formations is based
on the deviation in the shear modulus from the characteristic behaviour of the shear modulus
curve derived from SC theory [75, 76]. In figure 12 both the original and equivalent vug
distribution is used to simulate the variation in shear modulus with vug porosity in the range
0 < φvug < 50%. Also shown is the error in using the SC theory for spherical vugs as
the reference prediction for the shear modulus. The improved estimate of the shear modulus
across all phase fractions based on modified DEM theory will lead to improved predictions of
macropore fraction and ultimately oil recovery.

4. Thermodynamics of fluids in porous media

In the previous section 3 a powerful method is introduced to predict transport and elastic
properties of porous media. The method is based on integral geometric measures and the Kac
theorem for the spectrum of the Laplace operator. Also the thermodynamic behaviour of a
liquid which is constrained by a geometrically complex pore such as the one shown in figure 13
may depend on the morphological measures of the pores, where the pore volume and surface
area are only the simplest measures characterizing its shape. In [37, 84–86], for instance, the
structure and phase behaviour of microemulsions could be explained assuming that the free
energy, i.e., the effective Hamiltonian of the fluid domains on a mesoscopic scale, is given
solely by the four Minkowski functionals. In [87] it was shown at least numerically that these
four fundamental measures are indeed sufficient to describe the free energy of a hard-sphere
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Figure 13. A hard sphere fluid confined by a complex shaped container S (image by courtesy
of Peter König). In contrast to a complicated direct calculation of thermodynamic properties,
equation (4) gives the grand potential  in terms of only four thermodynamic properties of the fluid,
namely the pressure p, the surface tension σ and two bending rigidities κ and κ̄ (see figure 14). Their
energetically conjugated morphological quantities are the volume, the surface area, the integrated
mean curvature and the Euler characteristic of the container S bounding the fluid. The Minkowski
functionals Vν[S] are therefore the only relevant ‘extensive’ thermodynamic variables related to the
shape of the container S. They are readily available and easily allow the calculation of the grand
canonical potential  for the fluid within pores of arbitrary size and shape.

fluid inside an arbitrarily shaped domain. Here, we follow the presentation of [87] and add new
results in section 4.2 on capillary condensation, i.e., on the dependence of the liquid–vapour
coexistence region on the shape of the pore space.

Although thermodynamics is built on extremely general assumptions its implications
are far reaching and powerful. One basic building block is geometry which has a long
history in thermodynamics and statistical physics of condensed matter. The formulation of
thermodynamics in terms of differential forms [77], scaled-particle theory (SPT) for fluids [78],
depletion forces [79] of colloids in biological cells [80] and density functional theory [81]
(DFT) based on fundamental geometric measures [82] are only a few examples for the
importance of a general geometric point of view on thermodynamic properties. In the following
it is shown that not only transport and elastic properties but also thermodynamic quantities
depend in a unique way on the geometry of the pore space, i.e., on the Minkowski functionals
introduced in section 2.1.

4.1. Shape dependence of thermodynamic potentials

The grand potential  = [S; T, µ] of a fluid depends on the temperature T and the chemical
potential µ of the system, as well as on certain geometrical quantities which describe the shape
of the container that bounds the system S (see figure 13). What are these thermodynamically
relevant morphological parameters? One usually argues that every thermodynamic potential
is an extensive quantity, which means that it scales linearly with the ‘size’ of the container
S. By partitioning a large system into identical smaller subsystems one normally assumes
that [S; T, µ] is proportional to the volume V = V [S] of the system and uses as ansatz
[S; T, µ] = ω(T, µ) · V [S]. The intensive quantity ω(T, µ) is a thermodynamic property
of the fluid and independent of the ‘size’ of the confining container of S. In the case of
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the grand potential  it is the negative of the pressure p(T, µ) in the system. This simple
ansatz however is only valid for infinite bulk, i.e. ‘border-less’ systems, as it ignores that
a physical partitioning into finite systems induces changes in the grand potential due to the
influence of the dividing wall. If S is bounded by a container,  depends on the shape of
the container in a potentially complicated manner. However, in [87] it is shown that general
considerations restrict this functional dependence on the shape to a linear combination of
only four morphological measures, if all intrinsic length scales are small compared to the
system ‘size’. This finding is particularly important for depletion forces and torques [88] and
for systems such as porous media [9] or biological cells [80], where fluids are confined by
complex shaped compartments and where the dependence of thermodynamic quantities and
transport properties on the shape of pores or cells has significant functional and biological
consequences.

Let us focus on the dependence of the grand potential [S] on the shape of the system S,
i.e. let us regard  : S → R as a mapping from a container onto a real number. The actual
form of this mapping is given by the type and state of the fluid under consideration and is a
complicated integral over the phase space of the system, which can usually only be calculated
approximately. However, one may impose the following three physical restrictions on this
mapping.

(i) Motion invariance. Let G be the group of motions, namely translations and rotations in
three dimensions. The action of g ∈ G on a domain S is denoted by gS. The grand
potential [gS] = [S] does not change for all g; i.e. the thermodynamic potential of a
system must be independent of its location and orientation in space.

(ii) Continuity. If a sequence of convex sets Sn → S for n → ∞, converges towards the
convex set S, then the grand potential [Sn] → [S]. Intuitively, this continuity property
expresses the fact that an approximation of a convex domain by e.g. a convex polyhedron
also yields an approximation of the thermodynamic potential [S] by [Sn].

(iii) Additivity. The grand potential of the union S1 ∪ S2 of two domains Si is the sum of the
grand potential of the single domains subtracting the intersection

[S1 ∪ S2] = [S1] + [S2] − [S1 ∩ S2]. (3)

This relation generalizes the common rule for the addition of an extensive quantity for
two disjunct domains S1 ∩ S2 = ∅ to the case of overlapping domains by subtracting the
value of the thermodynamic quantity of the double-counted intersection. Note that the
intersection S1 ∩ S2 does not need to be a volume but can rather be an area or a line for
adjacent containers Si.

Naturally, the question arises about the most general form of a potential that satisfies these
three conditions. The Hadwiger theorem [35, 38] (introduced in section 2.1 and already used
for the reconstruction in section 2) states that every motion-invariant, conditional continuous
and additive functional in three dimensions can be written as a linear combination of the
volume V0 = ∫

S d3�x , the surface area V1 = 1
6

∫
∂S d2 �x , the integrated mean curvature

V2 = 1
3π

∫
∂S H d2 �x and the Euler characteristic V3 = 1

4π

∫
∂S K d A of the container wall.

Therefore, one may write [37, 84–86]

[S] = −pV0[S] + σ V1[S] + κV2[S] + κ̄V3[S] (4)

as a complete expression for the grand canonical potential. The pressure p(T, µ), the
surface tension at the planar wall σ(T, µ) and the bending rigidities κ(T, µ) and κ̄(T, µ)

are properties of the fluid and the wall–fluid interaction, but are independent of the actual
shape of the bounding wall. Note that this relation can be easily applied even to complex
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Figure 14. The expansion coefficients as defined in equation (4) of the grand potential of a hard-
sphere fluid (from [87]). For each value of η, the four thermodynamic coefficients can be used
to calculate thermodynamic quantities for arbitrarily shaped systems. The solid curve of the inset
shows the relative error of the interfacial tension γ at a cylinder with radius R calculated using
the thermodynamic coefficients at η = 0.3. This relative error is of the same order of magnitude
as the relative numerical error of the contact sum-rules (dashed curve), indicating clearly that the
very small deviation between the morphometric interfacial tension and that from a direct DFT
calculation is a numerical error of our calculation.

shaped objects because the shape of S enters the thermodynamic potential only via the four
simple morphometric measures Vν , while the thermodynamic coefficients σ , κ and κ̄ can be
determined in a simpler geometry.

Thermodynamic quantities can be derived directly from the grand potential  and inherit
a simple dependence on the shape of S by virtue of equation (4). For instance, the interfacial
tension γ = ( + pV )/A, which measures the total change in the grand potential per unit area
introduced by the wall, can be evaluated using

γ = σ + κ H̄ + κ̄ K̄ , (5)

where H̄ = V2/V1 and K̄ = V3/V1 are the averaged mean and Gaussian curvatures of the
bounding wall. These geometrical quantities can be calculated from the principal radii of
curvature R1 and R2 via H = (1/R1 + 1/R2)/2 and K = 1/(R1 R2). Note that this further
justifies the ansatz used in SPT [78, 90] for the interfacial tension and shows that the analytic
dependence of the interfacial tension on the curvature [91] is a direct consequence of the
additivity of the grand potential. No higher powers or derivatives of H̄ or K̄ contribute either
to γ or to .

In [87] the vanishing of higher powers of H̄ and K̄ in thermodynamic quantities such as
 and γ was tested by considering a fluid of hard spheres of radius R bounded by a hard wall.
The fluid was modelled via Rosenfeld’s FMT [82]. The obtained thermodynamic coefficients
of equation (4) are shown in figure 14 as functions of the packing fraction η of the fluid.
From these coefficients one can obtain values for the surface tension γ for various geometries.
In the inset of figure 14 the relative error (full curve), i.e., the difference of the interfacial
tension γ of a hard-sphere fluid from the expression given by equation (5), is shown with
packing fraction η = 0.3 at a cylinder with radius R as calculated with the thermodynamical
coefficients compared to that obtained directly from DFT. This error can be compared to the
numerical relative error for a sum rule [89, 90] (dashed curve), which gives an estimate for
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the accuracy of our DFT data. Both errors are of the same order of magnitude such that our
numerical data are in agreement with the prediction of equation (4). Thus, the surface tension
contains, beside a constant term, only contributions linear in the mean and Gaussian curvature
of the container.

The assumption that the grand potential of a fluid is motion invariant, continuous and
additive allows an expansion of thermodynamic quantitities in terms of only four simple
morphological functionals. As a consequence, curvature expansions exactly terminate
after linear terms in mean and Gaussian curvature. This observation allows a calculation
of thermodynamic quantities for complex shaped objects with a greatly reduced effort in
comparison to direct methods. The ideas presented here and in [87] for the hard-sphere fluid can
also be applied to fluids with short-ranged interactions provided that internal length scales are
small compared to typical features of the container. However, the arguments cannot be applied,
for instance, to critical phenomena, or if long ranged fluid–fluid or fluid–wall interactions are
considered or if wetting or drying phenomena [83] occur at the wall, as intrinsic lengths in
such systems have a macroscopic size.

4.2. Capillary condensation

Another example where integrals of curvature naturally occur is the phase behaviour of fluids
in a porous medium. An important phenomenon is capillary condensation, i.e., the reduction
of the critical point and the shift of the equilibrium chemical potential and the equilibrium
pressure towards lower values due to the interaction of the fluid with a substrate. In other
words, a liquid starts to boil at a higher temperature if it is enclosed by a small box. This
phenomenon is quite general and can be explained straightforwardly using a simple geometric
configuration. Consider, for instance, two plates of distance D; then the grand canonical
potentials  of a homogeneous vapour and liquid phase are given by g = −pV + 2Aγsg

and l = −p+V + 2Aγsl, respectively. Here, p is assumed to be the unaltered bulk vapour
pressure whereas p+ is the pressure of a metastable fluid phase stabilized by the substrate. A is
the surface area of the substrate and γ denotes the surface tension between the solid substrate
and the fluid phases. Thermodynamic equilibrium requires g = l and one obtains the well
known Kelvin equation

p − p+ = 2
γsg − γsl

D

 2

γlg

D
> 0 (6)

for the coexistence of a fluid and a vapour phase between two planar walls of distance D.
Thus, if the distance of the walls becomes small the pressure difference p − p+ forces a vapour
to condense while it remains gaseous in the bulk outside the slit. But what happens in a real
porous substrate?

Using a density functional theory for fluids in a porous medium one can calculate the
shift of the critical point and of the boiling temperature in terms of geometric measures of
the porous substrate. The present analysis is based on a simple version of density functional
theory for one-component fluids which consist of particles with a rotationally symmetric pair
interaction potential w(r). Within this approach the interaction potential w(r) = ws(r)+wl(r)

is split into a short-ranged repulsive part ws(r) and a long-ranged attractive part wl(r) [81].
The interaction between the fluid and the substrate is taken into account by a potential VS(�r).
The grand canonical density functional reads

[ρ(�r)] =
∫

V
d3r

[
fh(ρ(�r)) − µρ(�r) + ρ(�r)VS(�r)

]
+ 1

2

∫
V

d3r
∫

V
d3r ′wl(‖�r − �r ′‖)ρ(�r)ρ(�r ′)

(7)
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Figure 15. Shift of the critical point in a porous medium formed by overlapping (a) spheres of size R
at volume density n = m0ρ and (b) ellipsoids of aspect ratio λ. For Poisson distributed grains K the
structure function in equation (9) reads S(r) = e−nv+nV (K∩K�r ). For fixed volume fraction φ = e−n

(porosity) the critical point still depends on the aspect ratio λ and on the range of the interaction
potential R/r0 relative to the radius of the spheres. The relevant regime for physical applications of
the approximation is R/r0 � 1. (b) Even if the volume fractionφ = e−n (porosity) and additionally
the mean surface area 8nm1/m0 per volume are fixed for a porous medium, one finds a dependence
of the phase transition temperature on the shape of the pore. Without taking into account the
curvature contribution the critical point shift is given by 1 − T (eff)

c /Tc = 8nm1/m0γ0/w
(0), i.e.,

by −0.011 25 (n = 0.1, R = 10, solid curve), −0.1125 (n = 1, R = 10, dashed curve), −0.5625
(n = 5, R = 10, dot–dashed curve).

where V is the volume of the sample, ρ(�r) the number density of the fluid particles at
�r = (x, y, z), r = |�r |, and fh(ρ) is the reference free energy of a system determined by
the short-ranged contribution to the interaction potential ws(r). For these calculations let us
adopt the Carnahan–Starling expression fh(ρ) = kBTρ{ln(ρλ3) − 1 + 4η−3η2

(1−η)2 }, where λ is the

thermal de Broglie wavelength and η = π
6 ρr3

0 the packing fraction.
Within this density functional approach the equilibrium density ρ(eq)(�r) of the fluid

inside the porous medium minimizes the functional 
[
ρ(�r)

]
in equation (7) which yields

the grand canonical potential  = [ρ(eq)(�r)]. The equilibrium profile depends not only on
the temperature T , the chemical potential µ, and the substrate potential VS(�r) but also on the
position �r inside the pores. Nevertheless, one may show that the shift in the critical point and,
accordingly, the difference in the equilibrium pressures of the fluid bulk phases is given by the
expansion

(p − p+)V =
3∑

ν=1

hν[w(r)]Vν +
κ

2

∫
H 2 dS + · · · (8)

with coefficients hν depending on the system parameters and the interaction potential w(r) of
the fluid particles. For a slit of parallel flat walls of distance D one obtains V2 = V3 = H 2 = 0
and recovers immediately the result given by equation (6). In other words, relation (8)
generalizes Kelvin’s equation, which turns out to be the first term in a curvature expansion
of the pressure difference p − p+. The density functional approach also gives expressions
for the coefficients hν[w(r)], i.e., for surface tensions γsg and bending rigidities in terms
of the microscopic interaction potential w(�r ). Assuming that the equilibrium fluid density
ρ(eq)(�r) ≡ ρ is constant inside the pores one can derive an alternative expression to equation (8)
based on the structure function S(r) of the porous substrate K (see section 2.3). One finds for
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the shift δTc = (Tc − T 0
c )/T 0

c of the critical point (see figure 15)

δTc =
∫

V
d3�r wl(r)

w(0)
env(S(0) − S(r)). (9)

The structure function S(r) of a porous substrate can be measured by scattering experiments
independently from a calorimetric determination of the critical point, so that a test is possible
of the relation (9) between the morphology and the thermodynamics of a porous material. Of
course, the expression is based on the assumption of a homogeneous density of the fluid inside
the pores and has to be improved by applying the concept of parallel surfaces as indicated in
section 2.5. However, equation (9) is an example for a structure–property relation scientists
and engineers are looking for. Expanding the structure function S(r) in powers of the distance
r [92–94]

S(r) = V0(K)

V
− 3r

4

V1(K)

V
− r3

32

V3(K)

V
+

r3

32V

∫
∂K

H 2 dS + O(r5) (10)

one recovers an expression in terms of Minkowski functionals Vν of the porous structure. Since
the expansion (10) is only valid for sharp interfaces, the contribution proportional to the mean
curvature H vanishes and the bending rigidities κ and κ̄ are identical, which is not the case
for non-constant density profiles ρ(eq)(�r) inside the pores. Inserting (10) in equation (9) one
recovers a curvature expansion for the critical point shift

δTc = h1[w(r)]
V1[S]

V
+ h2[w(r)]

V2[S]

V
(11)

analogous to the generalized Kelvin equation (8) with explicitly given coefficients

h1[w(r)] = π

∫ ∞

0
dr r3wl(r), h2[w(r)] = π

24

∫ ∞

0
dr r5wl(r). (12)

Equation (11) is certainly not valid near the critical point because the thickness of a fluid
adsorption layer at the substrate wall is determined by the correlation length ξ(T ) which
becomes large at Tc. Instead of the critical point shift δTc ∼ D−1 as implied by equation (11)
for a fluid between walls of distance D, one expects δTc ∼ D−2 if density inhomogeneities of
size ξ are taken into account.

Curvature expansions such as in equations (4), (5), (8), and (10) are quite common in
physics and very useful for practical purposes. Integral geometry and Minkowski functionals
provide precisely the mathematical backbone and technical calculus for physical applications
of curvature measures. In section 2.1, for instance, the geometric functionals Vν are given for
the Boolean model, so that explicit expressions for the phase behaviour of fluids in porous
media modelled by overlapping grains can be derived. Although expression (9) has to be
improved it indicates a direction for future work, namely the prediction of thermodynamic
properties of materials when the morphology is known.

The complicated pore structure of an interconnected three-dimensional network of
capillary channels of nonuniform sizes and shapes distinguishes a porous medium from any
other solid or planar substrate. The connection of the two main features of fluids in porous
media, namely morphology and interfacial effects such as surface energies and wettability,
may help in future studies to understand the influence of the random geometric structure on
phase behaviour and transport properties, which are inherently determined by inhomogeneous
spatial structures on all length scales of the porous material.

5. Summary

Foams, gels and porous structures become increasingly important for technological
applications due to their special material properties as spatially structured matter. The physical
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properties depend crucially on the morphology, i.e., on shape and connectivity of the pores. The
knowledge, for instance, of the dependence of percolation thresholds on the distribution and
shape of pores is necessary for many applications ranging from oil recovery to conductivities
of modern materials.

Integral geometric measures, i.e., Minkowski functionals of the spatial structure, proved
to be structural quantities which are important for many physical properties of heterogeneous
materials. For instance, in section 3 it was shown that completely different porous media
exhibit very similar conductivities and elastic moduli as long as the structures have the same
Minkowski functionals. In section 4 we could even show that thermodynamic quantities such
as surface energies of a hard sphere fluid in an arbitrarily complex shaped pore depend only
linearly on the Minkowski functionals of the pore space. Thus, morphological measures
such as the Minkowski functionals are not only useful to quantitatively characterize the shape
and to optimally reconstruct spatially complex structures, but also to accurately predict fluid
properties in porous media.
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